Memory Management Algorithms

This appendix outlines the algorithms and data structures used for memory management in the context of LLM inference on mid-range GPUs. We focus on the key techniques discussed in the main text: dynamic memory allocation, paged memory management, and the copy-on-write mechanism.

Dynamic Memory Allocation Algorithm

Dynamic memory allocation is crucial for handling variable-length sequences in LLMs. The algorithm allocates memory based on the actual sequence length rather than a fixed maximum size.

Algorithm: DynamicMemoryAllocation
Input: SequenceLength L, MaximumMemoryBlock B, MemoryAllocator A
Output: AllocatedMemory M

1. M ← A.Allocate(Min(L * MemoryPerToken, B))
2. if M is NULL then
3.     M ← A.Allocate(B) // Attempt to allocate maximum block if minimum fails
4.     if M is NULL then
5.         A.FreeAll() // Free all memory and retry allocation
6.         M ← A.Allocate(Min(L * MemoryPerToken, B))
7. return M

Paged Memory Management

Paged memory management involves dividing the memory into fixed-size pages and managing these pages to optimize usage.

Algorithm: PagedMemoryManagement
Input: MemoryRequest R, PageTable T, PageSize S
Output: MemoryBlock B

1. B ← T.Lookup(R)
2. if B is NULL then
3.     B ← AllocateNewPage(S)
4.     T.Insert(R, B)
5. return B

Function AllocateNewPage(PageSize S)
1. if NoFreePagesAvailable() then
2.     CoalesceFreePages() // Merge adjacent free pages
3.    if NoFreePagesAvailable() then
4.        return NULL // No free pages available
5. page ← GetFreePage(S)
6. return page

Copy-on-Write Mechanism

The copy-on-write (COW) mechanism defers the duplication of memory until a write operation occurs.

Algorithm: CopyOnWrite
Input: MemoryBlock B to be modified, ReferenceCount C for B
Output: Modified MemoryBlock B'

1. if C > 1 then // Check if B is shared
2.     B' ← A.Allocate(SameSizeAs(B))
3.     Copy(B, B') // Duplicate the contents of B to B'
4.     C ← C - 1 // Decrement the reference count of the old block
6. return B' // Return the new block B'

Swapping Mechanism

Swapping involves moving data between the GPU memory and a slower, auxiliary memory to free up space in the GPU memory.

Algorithm: SwappingMechanism
Input: MemoryBlock B to be swapped out, AuxiliaryMemory M
Output: SwappedOut MemoryBlock B

1. if GPUMemoryFull() then
2.     B ← SelectVictimBlock() // Choose a block to swap out
3.     Write(B, M) // Write the contents of B to auxiliary memory M
4.     GPU.Free(B) // Free the GPU memory occupied by B
5. return B

Recomputation Mechanism

Recomputation is an alternative to swapping where data is recalculated instead of being stored in memory.

Algorithm: RecomputationMechanism
Input: ComputationDependencies D, RecomputationFunction R
Output: Recomputed Data B

1. if GPUMemoryFull() then
2.     foreach Dependency ∈ D do
3.         if NotInGPUMemory(Dependency) then
4.             Dependency ← R(Dependency) // Recompute the dependency
5. return R(B) // Recompute the data B using its dependencies

These algorithms are central to the efficient management of memory resources during LLM inference on mid-range GPUs. They provide a foundation for the development of more sophisticated memory management systems tailored to the needs of LLMs.

Last updated